
Deep Generation
in Task-Oriented Dialogue System

Lei Shu
https://leishu02.github.io/

1

https://leishu02.github.io/

Roadmap
➢ Introduction to Task-Oriented Dialogue System

➢ Modeling Multi-Action for Task-Oriented Dialogues
Shu et al. EMNLP 2019

➢ Flexible Structured Model for Task-Oriented Dialogues
Shu et al. SIGDIAL 2019, NeurIPS 2018 Conversational AI
Workshop

2

3

4

Hey, Google, turn off
the kitchen (light)!

5

6

Task-Oriented
● “I need to get this done”
● narrow focus
● goal-oriented, task-completion

eg: buying movie ticket,
in-car assistant

● efficient as possible
● understanding user’s intention,

tracking the dialogue history and
finding next action

Chit Chat
● “I want to chat”
● board focus
● casual, non-goal-oriented,

build long-term empathy, trust and
companionship

● the more turns the better
● generating natural, relevant and

diverse responses to make
conversations engaging

Task-Oriented Dialogue System
text in

text out
7

Dialogue Example (Restaurant)
Is there a cheap place in the north part of town?

Italian, please. Can you give me the address?

What is the phone number please?

There are two restaurants that meet your specification. One is Italian and the

other is Indian. Which would you prefer?

da vinci pizzeria is in the north part of town their address is 20 Milton Road

Chesterton.

da vinci pizzeria's phone number is 01223351707. Can I help you with anything

else?

No that will be it. Thank you
8

Natural Language Understanding and Dialogue State
Tracking

9

Dialogue State
Is there a cheap place in the north part of town?

Italian, please. Can you give me the address?

What is the phone number please?

<informational slots> {food: None} {pricerange: cheap} {area: north}

<Requestable slots>

<informational slots> {food: italian} {pricerange: cheap} {area: north}

<Requestable slots> address

<informational slots> {food: italian}; {pricerange: cheap}; {area: north}

<Requestable slots> phone

No that will be it. Thank you
10

Query Database

11

Database Example

id name food price
range

area address phone postcode

19218 mahal of cambridge indian cheap centre 3 - 5 Millers Yard Mill

Lane

01223 360409 C.B 2, 1 R.Q

19259 da vinci pizzeria italian cheap north 20 Milton Road

Chesterton

01223 351707 C.B 4, 3 A.X

19257 royal spice indian cheap north Victoria Avenue

Chesterton

01733 553355 C.B 4, 1 E.H

...

12

Dialogue State & DB Query Result
Is there a cheap place in the north part of town?

Italian, please. Can you give me the address?

What is the phone number please?

<informational slots> {food: None} {pricerange: cheap} {area: north}

<Requestable slots>

<DB query result> 2

<informational slots> {food: italian} {pricerange: cheap} {area: north}

<Requestable slots>

<DB query result> 1

<informational slots> {food: italian}; {pricerange: cheap}; {area: north}

<Requestable slots> phone

<DB query result> 1

No that will be it. Thank you
13

Policy Engine and Natural Language Generation

14

Dialogue Act & delexicalized System Response
Is there a cheap place in the north part of town?

Italian, please. Can you give me the address?

What is the phone number please?

inform (food) multiple_choice (food)

There are two restaurants that meet your specification. One is FOOD_SLOT

and the other is FOOD_SLOT. Which would you prefer?

inform (address, area, name)

NAME_SLOT is in the AREA_SLOT part of town their address is ADDRESS_SLOT.

inform (name, phone number) request (other)

NAME_SLOT 's phone number is PHONE_SLOT. Can I help you with anything

else?

No that will be it. Thank you
15

Roadmap

➢ Introduction to Task-Oriented Dialogue System

➢ Modeling Multi-Action for Task-Oriented Dialogues
Shu et al. EMNLP 2019

➢ Flexible Structured Model for Task-Oriented Dialogues
Shu et al. SIGDIAL 2019, NeurIPS 2018 Conversational AI
Workshop 16

Policy Engine

17

Dialogue Act

● in terms of acts and domain specific slots.
● a key role in the quality of the interaction with the user
● influences the efficiency (e.g., the conciseness and

smoothness) of the communication between the user and the
agent

18

19

Single Act

disadvantage
● limits what an agent can do in a

turn
● leads to lengthy dialogues
● makes tracking of state and

context throughout the dialogue
harder

● challenges users’ patience

advantage
● easy to fine tune with

reinforcement learning approach
after supervised learning

Multi Act

advantage
● expands what an agent can do in

a turn
● leads to efficient as possible
● makes tracking of state and

context throughout the dialogue
easier

disadvantage
● challenge reinforcement learning

approach

Multi-Act Prediction can be

● a multi-label classification problem (by ignoring sequential dependency
among the acts)

● a sequence generation
● We propose to generate a sequence of tuples (continue, act, slots)

○ maintain the dependency among the acts
○ reduce the recurrent steps
○ introduce the structure of the dialogue act into architecture

20

Encoder to CAS Decoder

21

Input: dialogue state (policy actions from the previous turn, user dialogue acts from the
current turn, user requested slots, the user informed slots, the agent requested slots and
agent proposed slots)

 database queried result, we call it KB (knowledge base) vector in the paper

Output: a sequence of tuples (continue, act, slots)

gated Continue Act Slot recurrent cell

22The whole gCAS decoder is recurrent-of-recurrent!

continue unit
Input: previous tuple, the KB vector, hidden state from the
previous step

Output: one class from {<continue>, <stop>, <pad>}

23

act unit
Input: previous act and slots, current continue unit’s output and
hidden state, the KB vector

Output: one act from act space

24

slot unit
Input: previous slots, current continue unit’s and act unit’s outputs, the KB vector, hidden
state from the act unit

Output: for each domain specific slot, it is a binary classification.

25Overall Loss

Dataset
Microsoft Research End-to-End Dialogue Challenge

26

Evaluation Metrics
precision, recall, F1 score of turn-level acts and frame

For task completion evaluation, Entity F1 score and Success F1 score (Lei et al.,
2018) are reported.

The Entity F1 score (differently from the entity match rate in state tracking) compares
the slots requested by the agent with the slots the user informed about and that were
used to perform the KB query. We use it to measure agent performance in requesting
information.

The Success F1 score compares the slots provided by the agent with the slots
requested by the user. We use it to measure the agent performance in providing
information

27

Baselines
● Classification replicates the MSR challenge (Li et al., 2018) policy network

architecture: two fully connected layers. We replace the last activation from
softmax to sigmoid in order to predict probabilities for each act-slot pair.

● Seq2Seq (Sutskever et al., 2014) encodes the dialogue state as a
sequence, and decodes agent acts as a sequence with attention
(Bahdanau et al., 2015).

● Copy Seq2Seq (Gu et al., 2016) adds a copy mechanism to Seq2Seq,
which allows copying words from the encoder input.

28

Baselines
● CAS adopts a single GRU (Cho et al., 2014) for decoding and uses three

different fully connected layers for mapping the output of the GRU to
continue, act and slots. For each step in the sequence of CAS tuples, given
the output of the GRU, continue, act and slot predictions are obtained by
separate heads, each with one fully connected layer. The hidden state of
the GRU and the predictions at the previous step are passed to the cell at
the next step connecting them sequentially.

● gCAS uses our proposed recurrent cell which contains separate continue,
act and slots unit that are sequentially connected.

29

Hyperparameter Setting
● The classification architecture has two fully connected layers of size 128.
● The remaining models have a hidden size of 64 and a teacher-forcing

rate of 0.5. Seq2Seq and Copy Seq2Seq use a beam search with beam
size 10 during inference.

● CAS and gCAS do not adopt a beam search since their inference steps
are much less than Seq2Seq methods.

● All models use Adam optimizer (Kingma and Ba, 2015) with a learning rate
of 0.001.

30

Task Completion (dialogue level)

31

Precision, Recall, F1 score of turn-level act

32

Precision, Recall, F1 score of turn-level act-slot pair

33

Generated Examples

34

Conclusion

We introduced a multi-act dialogue policy model motivated by the need for a
richer interaction between users and conversation agents.

We studied classification and sequence generation methods for this task, and
proposed a novel recurrent cell, gated CAS, which allows the decoder to
output a tuple at each step.

Experimental results showed that gCAS is the best performing model for
multi-act prediction. The CAS decoder and the gCAS cell can also be used in a
user simulator and gCAS can be applied in the encoder.

35

Roadmap

➢ Introduction to Task-Oriented Dialogue System

➢ Modeling Multi-Action for Task-Oriented Dialogues
Shu et al. EMNLP 2019

➢ Flexible Structured Model for Task-Oriented Dialogues
Shu et al. SIGDIAL 2019, NeurIPS 2018 Conversational AI
Workshop 36

Task-Oriented Dialogue System
text in

text out
37

Naive End-to-End Dialogue System

e.g. seq2seq

Advantages:

simplicity

Disadvantages:

no belief state

no database representation

lexicalized vocabulary (e.g. all names for all
restaurant are in your vocabulary)

no modularity (increased sample size)

38

Modularized End-to-End Dialogue Systems
Modules:
Natural language understanding,
dialogue state tracking,
knowledge base (KB) query,
dialogue policy engine,
response generation.

End-to-End: modules are
connected and trained together
with text as input and text as
output.

Advantage: reduce error
propagation

Wen et al 2017, Liu and Lane 2017, Lei et al 2018 39

Dialog State Tracking Module
Understands user’s latest intention, tracks dialog history, and updates dialog state at each
turn.
The updated dialog state is used for querying the Knowledge Base (KB) and for policy engine
/ response generation.

Two popular approaches: fully-structured and free-form.

Wen et al 2017 Lei et al 2018 40

Fully-Structured Approach

Wen et al 2017

Use the full structure of the KB, both
its schema and the values.

Assumption: the sets of informable
slot values and requestable slots are
fixed.

Network: multi-class classification.

Pros: value and slot are well aligned.

Cons: CANNOT adapt to dynamic KB
and detect out-of-vocabulary values in
the user’s utterance.

41

Free-Form Approach

Lei et al 2018

DOES NOT exploit any information
about the KB in the model architecture.

Network: sequence-to-sequence.

Pros:
● adaptable to new domains and

changes in the content of the KB
● solves the out-of-vocabulary

problem
Cons:
● value and slot are not aligned. E.g. in the travel booking system, “Chicago;

Seattle”, can you tell which is the departure and which is the arrival?
● unwanted order of slots, e.g. “address; party”, “address; time; party”
● Invalid states can be generated, like including non-requestable-slot words

42

Flexible-Structured Dialogue Model (FSDM)

43

We propose: Flexibly-Structured DST
Use only information in the schema of the
knowledge base, but not information about the
values.

Architecture:
● Informable Slot Value Decoder: separate

decoder for each informable slot (share
parameters, but different start token)

● Requestable Slot Decoder: multi-label
classifier for the requestable slots

Pros:
● slot and value are aligned
● solve the out-of-vocabulary problem
● adaptable to new domains and changes in the content of the KB
● No unwanted order of requestable slots and invalid state 44

Features of Flexible-Structured DST

Explicitly assign values to slots like the fully structured approach, while also
preserving the capability of dealing with OOV like the free-form approach.

Can be applied in real-world scenarios.

It brings challenges in response generation:

(1) Is it possible to improve the response generation quality based
on Flexible-Structured DST?

(2) How to incorporate the output from Flexible-Structured DST for
response generation?

45

Solution: Response Slot Decoder
 Response Slot Decoder

Response slots are the slot names that are
appear in a de-lexicalized response.

Multi-label classifier is adopted for
predicting which response slots will appear
in the agent response.

Example:
User: request(address)
System: The address of <name_slot> is in
<address_slot>

46

 Word Copy Distribution

Increases the chance of a word in generated
informable slot values, requestable slots and response
slots to appear in the agent response.

Used together with copy-mechanism (Gu et al 2016).

Solution: Word Copy Distribution

Example:
System: The address of <name_slot> is in <address_slot>

47

Flexible-Structured Dialogue Model (FSDM)

48

Overview of FSDM
Five components that work together in an end-to-end manner

(1) The encoder encodes the agent response, the belief state, and the current user
utterance

(2) The dialog state tracker contains informable slot value decoder and requestable slot
binary classifier; Both take the last hidden state of encoder as the initial state

(3) Given generated informable slot values, the KB query component queries the KB and
encodes the number of records returned in a one-hot vector

(4) The response slot binary classifier predicts what slots should appear in the agent
response

(5) The agent response decoder takes in the KB output, a word copy probability vector,
and the last hidden states of the input encoder to generate a response 49

Input
Encoder

Inputs: (1) the agent response At-1 , (2) the dialogue state Bt-1 from the (t-1)-th turn
, (3) the current user utterance Ut .

Outputs: last hidden state of the encoder serves as the initial hidden state of the
dialogue state tracker and the response decoder

50

Informable Slot Values Decoder
Inputs: (1) last hidden state of the encoder (2)
unique start-of-sentence symbols for each slot, for
example food slot’s starting word is “food”

Outputs: For each slot, a sequence of words
regarding this slot’s value are generated. For
example, the value generated for food slot is “italian
END_food”

Intuition: The unique start-of-sentence symbols
ensures slot and value alignment. The
copy-mechanism seq2seq allows copying value
directly from encoder input.

51

Requestable Slots Binary Classifier
Inputs: (1) last hidden state of the encoder (2) unique
start-of-sentence symbols for each slot, for example food
slot’s starting word is “food”.

Outputs: For each slot, a binary prediction (1/0) is
produced regarding whether this slot is requested by the
user or not.

Note that the GRU here is only one-step. It may be
replaced with any classification architecture. We choose
GRU because we want to use the hidden state here as the
initial state of response slot binary classifier.

52

Knowledge Base Query
Inputs: (1) generated informable slot values
(2) Knowledge base

Outputs: a one-hot vector represents the
number of records matched.

53

Response Slots Binary Classifier
Inputs: (1) KB query result (2) hidden
states of requestable slot binary classifier

Outputs: For each response slot, a
binary prediction (1/0) is produced
regarding whether this response slot
appears in the agent response or not.

Motivation: incorporate all the relevant
information about the retrieved entities
and the requested slots into the
response

54

Motivation: The canonical copy mechanism only takes a
sequence of word indexes as inputs, but does not accept
the multiple Bernoulli distributions we obtain from binary
classifiers.

Inputs: prediction from (1) informable slot value decoders,
(1) requestable slot binary classifier, (3) response slot
binary classifiers.

Outputs: if a word is a requestable slot or a response slot,
the probability is their binary classifier output; if a word
appears in the generated informable slot values, its
probability is equal to 1; for all other words, 0.

55

Agent Response Decoder

Final Loss

Informable
slot values

Requestable
slots

Response
slots

Agent
response

Inputs: (1) last hidden state of encoder
(2) KB query results result (3) Word copy
distribution

Outputs: a de-lexicalized agent response

56

Experiment Setting
Dataset:
Cambridge Restaurant dataset (CamRest) (Wen et al 2016)
Stanford in-car assistant dataset (KVRET) (Eric et al 2017)

Evaluation Metrics:
For belief state tracking, precision, recall, and F1 score of informable slot values
and requestable slots.

For task completion evaluation, the Entity Match Rate (EMR) and Success F1
score (SuccF1) are reported.

BLEU is applied to the generated agent responses for evaluating language
quality.

57

Experiment Setting-Baselines
NDM (Wen et al 2016) proposes a modular end-to-end trainable network. It
applies de-lexicalization on user utterances and responses. (fully structured)

LIDM (Wen et al 2017) improves over NDM by employing a discrete latent
variable to learn underlying dialogue acts. This allows the system to be refined by
reinforcement learning.(fully structured)

KVRN (Eric et al 2017) adopts a copy-augmented Seq2Seq model for agent
response generation and uses an attention mechanism on the KB. It does not
perform belief state tracking.(no DST)

TSCP/RL (Lei et al 2018) is a two-stage CopyNet which consists of one encoder
and two copy-mechanism-augmented decoders for belief state and response
generation. TSCP includes further parameter tuning with reinforcement learning
to increase the appearance of response slots in the generated response.
(free-form) 58

Turn-Level Dialogue State Tracking Result

59

Dialogue-Level Task Completion Result

60

Example of generated dialogue state and response
(calendar scheduling domain)

61

Conclusions

FSDM: novel end-to-end architecture with flexibly-structured
model for task-oriented dialogue.

Uses the structure in the schema of the KB to make
architectural choices that introduce inductive bias and
address the limitations of fully structured and free-form
methods.

The experiment suggests that this architecture is competitive
with SOTA models, while being applicable in real-world
scenarios 62

Reference
Bing Liu and Ian Lane. 2018. End-to-end learning of task-oriented dialogs. In Proceedings of the NAACL-HLT.

Bing Liu, Gokhan Tur, Dilek Hakkani-Tur, Pararth Shah, and Larry Heck. 2018. Dialogue learning with human teaching and
feedback in end-to-end train-able task-oriented dialogue systems. In NAACL.

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren, Xiangnan He, and Dawei Yin. 2018. Sequicity: Simplifying task-oriented
dialogue systems with single sequence-to-sequence architectures. In ACL.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li. 2016. Incorporating copying mechanism in sequence-to-sequence learning.
In ACL (1). The Association for Computer Linguistics.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkˇsi ́c, Milica Gasic, Lina M Rojas Barahona, Pei-Hao Su, Stefan Ultes, and Steve
Young. 2017b. A network-based end-to-end trainable task-oriented dialogue system. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, volume 1, pages 438–449. ACL.

Tsung-Hsien Wen, Yishu Miao, Phil Blunsom, and Steve J. Young. 2017a. Latent intention dialogue models. In ICML,
volume 70 of Proceedings of Machine Learning Research, pages 3732–3741. PMLR.

Mihail Eric, Lakshmi Krishnan, Francois Charette, and Christopher D. Manning. 2017. Key-value retrieval networks for
task-oriented dialogue. In SIGDIAL Conference, pages 37–49. Association for Computational Linguistics.

63

