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Roadmap
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Shu et al. SIGDIAL 2019, NeurIPS 2018 Conversational AI 
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Hey, Google, turn off 
the kitchen (light)!
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Task-Oriented
● “I need to get this done”
● narrow focus
● goal-oriented, task-completion

eg: buying movie ticket,
in-car assistant 

● efficient as possible
● understanding user’s intention, 

tracking the dialogue history and 
finding next action

Chit Chat
● “I want to chat”
● board focus
● casual, non-goal-oriented,

build long-term empathy, trust and 
companionship

● the more turns the better
● generating natural, relevant and 

diverse responses to make 
conversations engaging



Task-Oriented Dialogue System
text in

text out
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Dialogue Example (Restaurant)
Is there a cheap place in the north part of town?

Italian, please. Can you give me the address?

What is the phone number please?

There are two restaurants that meet your specification. One is Italian and the 

other is Indian. Which would you prefer?

da vinci pizzeria is in the north part of town their address is 20 Milton Road 

Chesterton.

da vinci pizzeria's phone number is 01223351707. Can I help you with anything 

else?

No that will be it.  Thank you
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Natural Language Understanding and Dialogue State 
Tracking
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Dialogue State 
Is there a cheap place in the north part of town?

Italian, please. Can you give me the address?

What is the phone number please?

<informational slots> {food: None} {pricerange: cheap} {area: north}

<Requestable slots>

<informational slots> {food: italian} {pricerange: cheap} {area: north}

<Requestable slots> address

<informational slots> {food: italian}; {pricerange: cheap}; {area: north}

<Requestable slots> phone

No that will be it.  Thank you
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Query Database
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Database Example

id name food price 
range

area address phone postcode

19218 mahal of cambridge indian cheap centre 3 - 5 Millers Yard Mill 

Lane

01223 360409 C.B 2, 1 R.Q

19259 da vinci pizzeria italian cheap north 20 Milton Road 

Chesterton

01223 351707 C.B 4, 3 A.X

19257 royal spice indian cheap north Victoria Avenue 

Chesterton

01733 553355 C.B 4, 1 E.H

... ... ... ... ... ... ... ...
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Dialogue State & DB Query Result 
Is there a cheap place in the north part of town?

Italian, please. Can you give me the address?

What is the phone number please?

<informational slots> {food: None} {pricerange: cheap} {area: north}

<Requestable slots>

<DB query result> 2

<informational slots> {food: italian} {pricerange: cheap} {area: north}

<Requestable slots>

<DB query result> 1

<informational slots> {food: italian}; {pricerange: cheap}; {area: north}

<Requestable slots> phone

<DB query result> 1

No that will be it.  Thank you
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Policy Engine and Natural Language Generation
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Dialogue Act & delexicalized System Response
Is there a cheap place in the north part of town?

Italian, please. Can you give me the address?

What is the phone number please?

inform (food) multiple_choice (food)

There are two restaurants that meet your specification. One is FOOD_SLOT 

and the other is FOOD_SLOT. Which would you prefer?

inform (address, area, name)

NAME_SLOT is in the AREA_SLOT part of town their address is ADDRESS_SLOT.

inform (name, phone number) request (other)

NAME_SLOT 's phone number is PHONE_SLOT. Can I help you with anything 

else?

No that will be it.  Thank you
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Policy Engine
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Dialogue Act

● in terms of acts and domain specific slots.
● a key role in the quality of the interaction with the user 
● influences the efficiency (e.g., the conciseness and 

smoothness) of the communication between the user and the 
agent
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Single Act

disadvantage
● limits what an agent can do in a 

turn
● leads to lengthy dialogues
● makes tracking of state and 

context throughout the dialogue 
harder

● challenges users’ patience

advantage
● easy to fine tune with 

reinforcement learning approach 
after supervised learning

Multi Act

advantage
● expands what an agent can do in 

a turn
● leads to efficient as possible
● makes tracking of state and 

context throughout the dialogue 
easier

disadvantage
● challenge reinforcement learning 

approach



Multi-Act Prediction can be

● a multi-label classification problem (by ignoring sequential dependency 
among the acts) 

● a sequence generation 
● We propose to generate a sequence of tuples (continue, act, slots)

○ maintain the dependency among the acts
○ reduce the recurrent steps
○ introduce the structure of the dialogue act into architecture
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Encoder to CAS Decoder
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Input: dialogue state (policy actions from the previous turn, user dialogue acts from the 
current turn, user requested slots, the user informed slots, the agent requested slots and 
agent proposed slots) 

   database queried result, we call it KB (knowledge base) vector in the paper

Output: a sequence of tuples (continue, act, slots)



gated Continue Act Slot recurrent cell

22The whole gCAS decoder is recurrent-of-recurrent! 



continue unit
Input:  previous tuple, the KB vector, hidden state from the 
previous step

Output: one class from {<continue>, <stop>, <pad>}
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act unit
Input:  previous act and slots, current continue unit’s output and 
hidden state, the KB vector 

Output: one act from act space
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slot unit
Input: previous slots, current continue unit’s and act unit’s outputs, the KB vector, hidden 
state from the act unit

Output: for each domain specific slot, it is a binary classification.

25Overall Loss



Dataset
Microsoft Research End-to-End Dialogue Challenge
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Evaluation Metrics
precision, recall, F1 score of turn-level acts and frame

For task completion evaluation, Entity F1 score and Success F1 score (Lei et al., 
2018) are reported. 

The Entity F1 score (differently from the entity match rate in state tracking) compares 
the slots requested by the agent with the slots the user informed about and that were 
used to perform the KB query. We use it to measure agent performance in requesting 
information. 

The Success F1 score compares the slots provided by the agent with the slots 
requested by the user. We use it to measure the agent performance in providing 
information
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Baselines
● Classification replicates the MSR challenge (Li et al., 2018) policy network 

architecture: two fully connected layers. We replace the last activation from 
softmax to sigmoid in order to predict probabilities for each act-slot pair.

● Seq2Seq (Sutskever et al., 2014) encodes the dialogue state as a 
sequence, and decodes agent acts as a sequence with attention 
(Bahdanau et al., 2015). 

● Copy Seq2Seq (Gu et al., 2016) adds a copy mechanism to Seq2Seq, 
which allows copying words from the encoder input.
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Baselines
● CAS adopts a single GRU (Cho et al., 2014) for decoding and uses three 

different fully connected layers for mapping the output of the GRU to 
continue, act and slots. For each step in the sequence of CAS tuples, given 
the output of the GRU, continue, act and slot predictions are obtained by 
separate heads, each with one fully connected layer. The hidden state of 
the GRU and the predictions at the previous step are passed to the cell at 
the next step connecting them sequentially. 

● gCAS uses our proposed recurrent cell which contains separate continue, 
act and slots unit that are sequentially connected.
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Hyperparameter Setting
● The classification architecture has two fully connected layers of size 128.
● The remaining models have a hidden size of 64 and a teacher-forcing 

rate of 0.5. Seq2Seq and Copy Seq2Seq use a beam search with beam 
size 10 during inference. 

● CAS and gCAS do not adopt a beam search since their inference steps 
are much less than Seq2Seq methods. 

● All models use Adam optimizer (Kingma and Ba, 2015) with a learning rate 
of 0.001.
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Task Completion (dialogue level)
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Precision, Recall, F1 score of turn-level act
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Precision, Recall, F1 score of turn-level act-slot pair
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Generated Examples
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Conclusion

We introduced a multi-act dialogue policy model motivated by the need for a 
richer interaction between users and conversation agents. 

We studied classification and sequence generation methods for this task, and 
proposed a novel recurrent cell, gated CAS, which allows the decoder to 
output a tuple at each step. 

Experimental results showed that gCAS is the best performing model for 
multi-act prediction. The CAS decoder and the gCAS cell can also be used in a 
user simulator and gCAS can be applied in the encoder. 
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Task-Oriented Dialogue System
text in

text out
37



Naive End-to-End Dialogue System

e.g. seq2seq

Advantages:

simplicity

Disadvantages: 

no belief state

no database representation

lexicalized vocabulary (e.g. all names for all 
restaurant are in your vocabulary) 

no modularity (increased sample size)

38



Modularized End-to-End Dialogue Systems
Modules: 
Natural language understanding, 
dialogue state tracking, 
knowledge base (KB) query, 
dialogue policy engine,
response generation.

End-to-End: modules are 
connected and trained together 
with text as input and text as 
output.

Advantage: reduce error 
propagation

Wen et al 2017, Liu and Lane 2017, Lei et al 2018 39



Dialog State Tracking Module
Understands user’s latest intention, tracks dialog history, and updates dialog state at each 
turn.
The updated dialog state is used for querying the Knowledge Base (KB) and for policy engine 
/ response generation.

Two popular approaches: fully-structured and free-form.

Wen et al 2017 Lei et al 2018 40



Fully-Structured Approach

Wen et al 2017

Use the full structure of the KB, both 
its schema and the values.

Assumption: the sets of informable 
slot values and requestable slots are 
fixed.

Network: multi-class classification.

Pros: value and slot are well aligned.

Cons: CANNOT adapt to dynamic KB 
and detect out-of-vocabulary values in 
the user’s utterance.
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Free-Form Approach

Lei et al 2018

DOES NOT exploit any information 
about the KB in the model architecture.

Network: sequence-to-sequence.

Pros: 
● adaptable to new domains and 

changes in the content of the KB 
● solves the out-of-vocabulary 

problem
Cons: 
● value and slot are not aligned. E.g. in the travel booking system, “Chicago; 

Seattle”, can you tell which is the departure and which is the arrival?
● unwanted order of slots, e.g. “address; party”, “address; time; party”
● Invalid states can be generated, like including non-requestable-slot words
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Flexible-Structured Dialogue Model (FSDM)
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We propose: Flexibly-Structured DST
Use only information in the schema of the 
knowledge base, but not information about the 
values.

Architecture:
● Informable Slot Value Decoder: separate 

decoder for each informable slot (share 
parameters, but different start token) 

● Requestable Slot Decoder: multi-label 
classifier for the requestable slots

Pros: 
● slot and value are aligned
● solve the out-of-vocabulary problem
● adaptable to new domains and changes in the content of the KB 
● No unwanted order of requestable slots and invalid state 44



Features of Flexible-Structured DST

Explicitly assign values to slots like the fully structured approach, while also 
preserving the capability of dealing with OOV like the free-form approach.

Can be applied in real-world scenarios.

It brings challenges in response generation:

(1) Is it possible to improve the response generation quality based 
on Flexible-Structured DST?

(2) How to incorporate the output from Flexible-Structured DST for 
response generation?
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Solution: Response Slot Decoder
        Response Slot Decoder

Response slots are the slot names that are 
appear in a de-lexicalized response.

Multi-label classifier is adopted for 
predicting which response slots will appear 
in the agent response.

Example:
User: request(address)
System: The address of <name_slot> is in 
<address_slot>

46



         Word Copy Distribution 

Increases the chance of a word in generated 
informable slot values, requestable slots and response 
slots to appear in the agent response.

Used together with copy-mechanism (Gu et al 2016).

Solution: Word Copy Distribution

Example:
System: The address of <name_slot> is in <address_slot>
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Flexible-Structured Dialogue Model (FSDM)
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Overview of FSDM 
Five components that work together in an end-to-end manner

(1) The encoder encodes the agent response, the belief state, and the current user 
utterance

(2) The dialog state tracker contains informable slot value decoder and requestable slot 
binary classifier; Both take the last hidden state of encoder as the initial state

(3) Given generated informable slot values, the KB query component queries the KB and 
encodes the number of records returned in a one-hot vector

(4) The response slot binary classifier predicts what slots should appear in the agent 
response

(5) The agent response decoder takes in the KB output, a word copy probability vector, 
and the last hidden states of the input encoder to generate a response 49



Input
Encoder

Inputs: (1) the agent response At-1 , (2) the dialogue state Bt-1 from the (t-1)-th turn 
, (3) the current user utterance Ut .

Outputs: last hidden state of the encoder serves as the initial hidden state of the 
dialogue state tracker and the response decoder

50



Informable Slot Values Decoder
Inputs: (1) last hidden state of the encoder (2) 
unique start-of-sentence symbols for each slot, for 
example food slot’s starting word is “food”

Outputs: For each slot, a sequence of words 
regarding this slot’s value are generated. For 
example, the value generated for food slot is “italian 
END_food”

Intuition: The unique start-of-sentence symbols 
ensures slot and value alignment. The 
copy-mechanism seq2seq allows copying value 
directly from encoder input.
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Requestable Slots Binary Classifier
Inputs: (1) last hidden state of the encoder (2) unique 
start-of-sentence symbols for each slot, for example food 
slot’s starting word is “food”.

Outputs: For each slot, a binary prediction (1/0) is 
produced regarding whether this slot is requested by the 
user or not.

Note that the GRU here is only one-step. It may be 
replaced with any classification architecture. We choose 
GRU because we want to use the hidden state here as the 
initial state of response slot binary classifier.
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Knowledge Base Query
Inputs: (1) generated informable slot values 
(2) Knowledge base

Outputs: a one-hot vector represents the 
number of records matched.
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Response Slots Binary Classifier
Inputs: (1) KB query result (2) hidden 
states of requestable slot binary classifier

Outputs: For each response slot, a 
binary prediction (1/0) is produced 
regarding whether this response slot 
appears in the agent response or not.

Motivation: incorporate all the relevant 
information about the retrieved entities 
and the requested slots  into the 
response
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Motivation: The canonical copy mechanism only takes a 
sequence of word indexes as inputs, but does not accept 
the multiple Bernoulli distributions we obtain from binary 
classifiers.

Inputs: prediction from (1) informable slot value decoders, 
(1) requestable slot binary classifier, (3) response slot 
binary classifiers.

Outputs: if a word is a requestable slot or a response slot, 
the probability is their binary classifier output; if a word 
appears in the generated informable slot values, its 
probability is equal to 1; for all other words, 0.
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Agent Response Decoder

Final Loss

Informable 
slot values

Requestable 
slots

Response 
slots

Agent 
response

Inputs: (1) last hidden state of encoder 
(2) KB query results result (3) Word copy 
distribution

Outputs: a de-lexicalized agent response

56



Experiment Setting
Dataset: 
Cambridge Restaurant dataset (CamRest) (Wen et al 2016)
Stanford in-car assistant dataset (KVRET) (Eric et al 2017)

Evaluation Metrics:
For belief state tracking, precision, recall, and F1 score of informable slot values 
and requestable slots.

For task completion evaluation, the Entity Match Rate (EMR) and Success F1 
score (SuccF1) are reported.

BLEU is applied to the generated agent responses for evaluating language 
quality.
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Experiment Setting-Baselines
NDM (Wen et al 2016) proposes a modular end-to-end trainable network. It 
applies de-lexicalization on user utterances and responses. (fully structured)

LIDM (Wen et al 2017) improves over NDM by employing a discrete latent 
variable to learn underlying dialogue acts. This allows the system to be refined by 
reinforcement learning.(fully structured)

KVRN (Eric et al 2017) adopts a copy-augmented Seq2Seq model for agent 
response generation and uses an attention mechanism on the KB. It does not 
perform belief state tracking.(no DST)

TSCP/RL (Lei et al 2018) is a two-stage CopyNet which consists of one encoder 
and two copy-mechanism-augmented decoders for belief state and response 
generation. TSCP includes further parameter tuning with reinforcement learning 
to increase the appearance of response slots in the generated response. 
(free-form) 58



Turn-Level Dialogue State Tracking Result
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Dialogue-Level Task Completion Result
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Example of generated dialogue state and response
(calendar scheduling domain)
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Conclusions

FSDM: novel end-to-end architecture with flexibly-structured 
model for task-oriented dialogue.

Uses the structure in the schema of the KB to make 
architectural choices that introduce inductive bias and 
address the limitations of fully structured and free-form 
methods.

The experiment suggests that this architecture is competitive 
with SOTA models, while being applicable in real-world 
scenarios 62
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